首页 > 电气 > 问答 > 相变储热材料,什么是相变材料

相变储热材料,什么是相变材料

来源:整理 时间:2023-05-04 06:35:51 编辑:五合装修 手机版

1,什么是相变材料

相变材料(PCM - Phase Change Material)是指随温度变化而改变物质状态并能提供潜热的物质。转变物理性质的过程称为相变过程,这时相来变材料将吸收或源释放大量的潜热。这种材料一旦在人类生活被广泛应用,将成为节能环保的最佳绿色环保载体,在我国已经列为国家级研发利用序列。  相变:  物质从一种相百转变为另一种相的过程。物质系统中物理、化学性质完全相同,与其他部分度具有明显分界面的均匀部分称为相。与固、液、气三态对应,物质有固相、液相、气相。
相变材料(PCM)是指在温度不变的情况下而被动吸收热量改变物质状态并能提供潜热的物质。相变材料在国内别称较多:如相变降温材料、相变储热材料、相变控温材料、相变蓄冷材料、相变吸热材料等等,按用途命名较多。相变材料在国外的别称比国内少很多,毕竟起步早,叫法相对统一,基本都叫PCM(phase change material)即相变材料,也有LSH material(潜热材料)、Phase change thermal interface materials(相变热界面材料)、PCC Thermal Runaway Material(防热失控材料/控温材料)的叫法。相变材料常见应用相变材料属于新型材料,在国内,新材料的企业在研究相变材料的只有很小一部分,能规模化自主生产的,只有屈指可数的几家,目前相变材料做到绝缘防水,抗高压,高导热、高热焓值、大比热容,相变后不改变形状的相变材料就力王新材料(KINGBALI)一家。相变材料通常用于控制物体或环境的温度,国内相变材料的厂家集中应用在冷链物流、道路交通建设、建筑建材及特种衣物布料上较多。力王新材料(KINGBALI)发挥自身在加热、发热、导热、散热、隔热、控温等材料的研发技术优势,力王新材的相变材料优先应用在手机、平板、通讯基站等5G通讯硬件降温,电动汽车、无人机、电动工具电池热管理系统,PC、床戴设备、AI等智能设备的散热控温上,力王仍致力于不断扩展相变材料在更多行业上的应用,让更多需要高效降温控温的领域享受力王相变新材料带来的好处。相变材料特性应用1、力王相变材料可提高被动能量吸收,热缓冲,增加受热的均匀性和安全性,可为电池和电子设备提32313133353236313431303231363533e58685e5aeb931333431366236供热保护,以及保障热敏元件和表面温度的稳定性。2、力王相变材料导热系数高,导热均匀快速,可按顾客需求温度定制,能有效导热和快速吸热分配热量,达到降温散热的效果,以防止热失控及热失控传播。3、力王新材料的相变材料前期可通过材料的相变化过程吸收热量,或释放热量,能在没有热量吸收的情况下释放能量,起到恒温或保温的作用。
相变储能材料从液态向固知态转变时,要经历物理状态的变化。在这两种相变过程中,材料要从环境道中吸热,反之,向环境放热。在物理状态发生变化时可储存或释放的能量称为相变热,发生相变的温回度范围很窄。物理状态发生变化时,材料自身的温度在相变完成前几乎维持不变。大量相变热转移到环境中时,产生了一个时间延长的恒温平台答,并可在热循环时,储存或释放显热。

什么是相变材料

2,什么 叫 相变材料

相变材料的蓄热机理与特点 相变材料具有在一定温度范围内改变其物理状态的能力。以固-液相变为例,在加热到熔化温度时,就产生从固态到液态的相变,熔化的过程中,相变材料吸收并储存大量的潜热;当相变材料冷却时,储存的热量在一定的温度范围内要散发到环境中去,进行从液态到固态的逆相变。在这两种相变过程中,所储存或释放的能量称为相变潜热。物理状态发生变化时,材料自身的温度在相变完成前几乎维持不变,形成一个宽的温度平台,虽然温度不变,但吸收或释放的潜热却相当大。 相变材料的分类相变材料主要包括无机PCM、有机PCM和复合PCM三类。其中,无机类PCM主要有结晶水合盐类、熔融盐类、金属或合金类等;有机类PCM主要包括石蜡、醋酸和其他有机物;近年来,复合相变储热材料应运而生,它既能有效克服单一的无机物或有机物相变储热材料存在的缺点,又可以改善相变材料的应用效果以及拓展其应用范围。因此,研制复合相变储热材料已成为储热材料领域的热点研究课题。但是混合相变材料也可能会带来相变潜热下降,或在长期的相变过程中容易变性等缺点。 相变储能建筑材料 相变储能建筑材料兼备普通建材和相变材料两者的优点,能够吸收和释放适量的热能;能够和其他传统建筑材料同时使用;不需要特殊的知识和技能来安装使用蓄热建筑材料;能够用标准生产设备生产;在经济效益上具有竞争性。 相变储能建筑材料应用于建材的研究始于1982年,由美国能源部太阳能公司发起。20世纪90年代以PCM处理建筑材料(如石膏板、墙板与混凝土构件等)的技术发展起来了。随后,PCM在混凝土试块、石膏墙板等建筑材料中的研究和应用一直方兴未艾。1999年,国外又研制成功一种新型建筑材料-固液共晶相变材料,在墙板或轻型混凝土预制板中浇注这种相变材料,可以保持室内温度适宜。另欧美有多家公司利用PCM生产销售室外通讯接线设备和电力变压设备的专用小屋,可在冬夏天均保持在适宜的工作温度。此外,含有PCM的沥青地面或水泥路面,可以防止道路、桥梁、飞机跑道等在冬季深夜结冰。 相变材料与建筑材料的复合工艺 PCM与建材基体的结合工艺,目前主要有以下几种方法:(1)将PCM密封在合适的容器内。(2)将PCM密封后置入建筑材料中。(3)通过浸泡将PCM渗入多孔的建材基体(如石膏墙板、水泥混凝土试块等)。(4)将PCM直接与建筑材料混合。(5)将有机PCM乳化后添加到建筑材料中。国内建筑节能知名企业——北京振利高新技术公司成功地将不同标号的石蜡乳化,然后按一定比例与相变特种胶粉、水、聚苯颗粒轻骨料混合,配制成兼具蓄热和保温的可用于建筑墙体内外层的相变蓄热浆料。试验楼的测试工作正在进行中。同时在开发的还有相变砂浆、相变腻子等产品。 相变材料在建筑围护结构中的应用 现代建筑向高层发展,要求所用围护结构为轻质材料。但普通轻质材料热容较小,导致室内温度波动较大。这不仅造成室内热环境不舒适,而且还增加空调负荷,导致建筑能耗上升。目前,采用的相变材料的潜热达到170J/g甚至更高,而普通建材在温度变化1℃时储存同等热量将需要190倍相变材料的质量。因此,复合相变建材具有普通建材无法比拟的热容,对于房间内的气温稳定及空调系统工况的平稳是非常有利的。 相变材料的选择 用于建筑围护结构的相变建筑材料的研制,选择合适的相变材料至关重要,应具有以下几个特点:(1)熔化潜热高,使其在相变中能贮藏或放出较多的热量;(2)相变过程可逆性好、膨胀收缩性小、过冷或过热现象少;(3)有合适的相变温度,能满足需要控制的特定温度;(4)导热系数大,密度大,比热容大;(5)相变材料无毒,无腐蚀性,成本低,制造方便。 在实际研制过程中,要找到满足这些理想条件的相变材料非常困难。因此,人们往往先考虑有合适的相变温度和有较大相变潜热的相变材料,而后再考虑各种影响研究和应用的综合性因素。 就目前来说,现存的问题主要在相变储能建筑材料耐久性以及经济性方面。耐久性主要体现在三个方面:相变材料在循环过程中热物理性质的退化问题;相变材料易从基体的泄漏问题;相变材料对基体材料的作用问题。经济性主要体现在:如果要最大化解决上述问题,将导致单位热能储存费用的上升,必将失去与其他储热法或普通建材竞争的优势。相变储能建筑材料经过20多年的发展,其智能化功能性的特点勿容置疑。随着人们对建筑节能的日益重视,环境保护意识的逐步增强,相变储能建筑材料必将在今后的建材领域大有用武之地,也会逐渐被人们所认知,具有非常广阔的应用前景。

什么 叫 相变材料

3,相变储能材料的应用前景

随着中国经济的高速发展,中国的产业用纺织品和非织造布得到快速增长,2004年总量已近320万吨。非织造布也已超过100万吨,居世界第二位。总量增加的同时,品种也大幅度增加。这些都得益于技术创新和新产品开发。   相变储能材料是近些年开发的一种新材料,是利用某些物质在特定温度下,通过相变来吸收或释放能量。这种材料可制成纤维状、胶囊状或其它包覆形态。纤维状的可直接进行纺织加工,但容纳相变材料较少,储能效果不理想。胶囊状体积大的容纳材料较多,但在实际应用中加工困难,体积小时,同样存在包容物不多的问题。其它方式也都存在不同的优缺点。当前研究的重点是寻找储能效果好、易加工、低成本的物质和制造方法。   第一次海湾战争期间,由于海湾地区的高温和阳光照射,使舰船甲板表面温度达到60°C以上。持续高温使美军参战官兵消耗极大,美军即紧急要求国内提供降温服装,Triangle公司很快研究制成了一种含有相变材料大胶囊的茄克,部分解决了甲板士兵的降温问题。这种茄克经过改进于2001年用于海军陆战队的三防服。该茄克可在40°C的气温下保持服内舒适达1~2小时,并且很容易再生,有效延长了美军作战部队在酷热条件下的战地值勤时间。美国军方还利用该原理制成了温度调节织物,在海军低温干式潜水服、空军防寒抗浸服、防红外隐身服装和陆军士兵保温靴袜等方面使用,具有良好的保温或降温效果。中国地域辽阔,南北温差很大,南沙群岛驻军、海军士兵、三北地区秋冬季士兵服装和防化兵士兵以及夏季武警战士均需要类似的特殊保温或降温服装,年需求量在10万套以上。   中国已开展相变储能材料的研究,天津工业大学张兴祥研究员领导的研究小组研制的熔纺纤维中相变材料微胶囊含量达到了20wt%,经测试在38°C的气温下保持内部温度低于30°C达2.5小时。目前已试用于我军新型飞行服和通风服等,与俄罗斯同类服装相比具有更好的保温性能,同时还具有明显的温度调节功能。温度调节服装在三北地区军用保暖服装以及东南沿海防红外隐身服等方面有良好的应用前景。   这是一类新材料,除在纺织方面应用外,还可进行余热回收、能量储存等。天津工业大学研究的相变储能材料相变温度为28.2~25.4°C和32.1~28.5°C两种,储热量达150J/g以上,耐热和耐水性能良好。研究储热量大、适应不同相变温度的相变储能材料,并且加工制造方便是这一领域的方向,同时开展应用研究可以使这一新材料发挥更大的作用。
相变储能建筑材料相变储能建筑材料 在其物相变化过程中,可从环境中吸收热(冷)量或向环境中放出热量,从而达到能量储存和释放及调节能量需求和供给失配的目的。它兼备普通建材和相变材料两者的优点,能够吸收和释放适量的热能;能够和其他传统建筑材料同时使用;不需要特殊的知识和技能来安装使用蓄热建筑材料;能够用标准生产设备生产;有显著的节能降耗效应,在经济效益上具有竞争性。相变储能建筑材料应用于建材的研究始于1982年,由美国能源部太阳能公司发起。20世纪90年代以pcm处理建筑材料(如石膏板、墙板与混凝土构件等)的技术发展起来了。随后,pcm在混凝土试块、石膏墙板等建筑材料中的研究和应用一直方兴未艾。1999年,国外又研制成功一种新型建筑材料-固液共晶相变材料,在墙板或轻型混凝土预制板中浇注这种相变材料,可以保持室内温度适宜。另欧美有多家公司利用pcm生产销售室外通讯接线设备和电力变压设备的专用小屋,可在冬夏天均保持在适宜的工作温度。此外,含有pcm的沥青地面或水泥路面,可以防止道路、桥梁、飞机跑道等在冬季深夜结冰。国内外研究现状国外对相变储能材料的研究工作始于20世纪60年代。最早是以节能为目的,从太阳能和风能的利用及废热回收,经过不断的发展,逐渐扩展到化工、航天、电子等领域。近年来最主要的研究和应用集中在建筑物的集中空调、采暖及被动式太阳房等领域。国外研究机构和科研人员对蓄热材料的理论研究工作,尤其是对蓄热材料的组成、蓄热容量随热循环变化情况、相变寿命、储存设备等进行了详细的研究,在实际应用上也取得了很大进展。相对于已经进入实用阶段的发达国家,我国在20世纪70年代末80年代初才开始对蓄热材料进行研究,所以国内相变储能材料的理论和应用研究还比较薄弱。上世纪90年代中期以来,国内研究重点开始转向有机相变材料和复合定形相变材料的研究开发。最新的研究进展1 建筑节能领域相变储能材料作为一种热能储存材料在建筑节能领域得到了广泛应用,如相变混凝土、相变墙板等。它通过相变材料的相变过程储存能量,从而实现对建筑的温度调节、节省电能等。吴晓琳等采用聚氨酯硬质泡沫作为封装材料,十八烷为相变材料,以自制纳米氧化硅作为稳定剂与成核剂,采用原位封装的方式制备了一种聚氨酯复合相变储能材料。结果表明该聚氨酯基复合相变材料具有微纳米级均匀的微观结构,相变材料均匀地分布在聚氨酯中,相变特性不受聚氨酯的影响,具有较高的结构稳定性。唐正生等将浸渍有na2so4的稻秆与特定组成的硅酸盐水泥浆体拌合,经模压制备出了一种稻秆/na2so4定型相变板材。测试结果表明该板材具有强度高、阻燃性好、蓄热密度大等优点,且经实验证实稻秆能装载自身质量4的na2so4·10h2o,板材经30次相变循环后质量损失为1.87%,因此具有很高的实际应用价值。2 电子信息领域近年来,电子技术的迅速发展,使电子设备越来越趋向于微型化、高集成化和大功率化,抗热冲击和使用寿命等问题成为制约电子技术发展的瓶颈,因而相变技术被应用到了电子信息领域,并逐渐成为研究的热点。高学农等采用物理吸附法制备了一种石蜡/膨胀石墨复合相变储能材料,具有较高的相变焓和良好的传热性能。将其应用于电子器件的热管理中,通过模拟芯片实验研究了该石蜡/膨胀石墨复合相变材料控温电子散热器的性能,结果表明可有效降低模拟芯片的升、降温速率,延长散热器的控温时间,降低电子器件因温度瞬间升高而烧坏的可能性,实现对电子器件的保护。中科院上海微系统与信息技术研究所经过多年努力,发现了自主sisbte体系相变材料,了sisbte具有低于传统ge2sb2te5的功耗、更高的数据保持力和更快的相变速度。且经过工程化反复验证,确定了sixsb2te3体系,当x在3-3.5区间内,pcram单元在数据保持能力、粘附能力、体积变化、疲劳使用寿命、操作可靠性、功耗等方面均优于ge2sb2te5,并已在12寸工艺平台上进行了实验。该材料体系的发现对于打破国际技术垄断,推动我国自主开发的pcram芯片具有重要的学术价值和商业价值。 3纤维纺织领域 相变纤维材料的开发为高功能的智能纺织品研究提供了新的途径。相变纤维及其纺织品可以满足消费者在“多功能”、“舒适性”方面的要求,因而具有很大的应用前景。 韩娜等以正构烷烃和聚合物相变材料为芯层,聚丙烯为纤维的皮层,采用双组分熔融复合熔融纺丝法制备储热调温纤维。采用扫描电子显微镜(sem)、差示扫描量热仪(dsc)和单纤维电子强力仪等观察纤维的形貌,研究纤维的热力学性能和力学性能。结果表明:纤维的结构致密,具有明显的皮芯分界,相变材料质量分数为28%时,纤维的热焓可达到36~40 j/g,对纤维进行2.75倍的牵伸后处理,断裂强度和伸长率分别为2.3 cn/dtex和29%,可满足纺织服装的应用要求。 张梅等[13]利用静电纺丝法制备了一种具有相变性能的pva/peg复合纳米纤维,并对制备工艺参数进行了优化。结果表明,pva/peg共混溶液通过静电纺丝可获得分布较均匀的复合纤维,但peg的存在影响pva的成纤效果,其中pva/peg的百分含量为4:6的混合溶液成纤较好;通过纺丝参数的研究,确定了最佳的纺丝条件,15kv/10cm;pva/peg复合纳米纤维具有可逆的相转变过程,tm和tc值与pva/peg质量百分含量和peg2000与peg4000的共混比例有关。4军事领域 由于相变材料具有高的储能密度,并且在吸热(放热)过程中具有温度不变的特性,因而在热红外伪装和热红外假目标方面也有广阔的应用前景. 孙文艳等采用微胶囊技术,对正十四烷、正十八烷、石蜡3种相变材料进行封装,将其制成红外隐身涂料并应用于军事目标中,以控制目标表面热惯量及表面温度,消除或降低目标与背景的红外辐射差别,从而实现了对背景红外特征的模拟。将制备的涂料涂覆在卡车模型上,结果表明在荒漠丘陵热图背景下明显提高了目标的红外隐身性能。 未来展望以及发展趋势 随着人们对节能问题的日益重视以及环境保护意识的逐步增强,相变储能材料必将在将来发挥更大的作用,其应用前景也会越来越广阔。但是,目前在相变材料研发的过程中仍有许多需要解决的问题,如稳定性差、寿命短等,因此相变材料未来的研究重点是根据环境条件要求,研制出具有合适的相变温度与相变焓,并且能够长期使用,物理化学性能稳定、经济环保的相变材料。

相变储能材料的应用前景

文章TAG:相变材料什么相变材料相变储热材料

最近更新